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Abstract. The statistical distribution of coagulating droplets is studied assuming that they 
form a Markovian system in continuous time. Only the total number density is studied, but 
the resulting probability balance equation can be solved exactly by means of generating 
function techniques. Thus for the first time we have available an exact solution showing how 
the probability evolves as time proceeds. We note that the variance changes from zero at the 
initial time through a maximum and back to zero as time tends to infinity: this is consistent 
with the deterministic initial and endpoint distribution functions. The accuracy of a closure 
scheme based upon quasi-normality is studied and shown to be acceptable for the initial 
stages of evolution when the values of the particle density are large. 

1. Introduction 

The statistical distribution of droplets in suspension is of interest in several important 
areas of engineering and physics. In particular, we note the need to understand droplet 
coalescence in warm clouds (Warshaw 1967) and aerosol coagulation in pollution 
studies (Hidy and Brock 1970). The fundamental problem is to calculate the condi- 
tional probability distribution of droplet volume; that is, to obtain 
PN(UI,  UZ, . . . , UN; t )  dul du2 . .  . duN, the probability that, given some initial droplet 
distribution at t = 0 ,  there will be N droplets at time t with volume in the ranges 
( u l ,  u1 +dvl) ,  (UZ, uz+dvz),  . . . , (uN, vN +duN). A number of approaches have been 
adopted to deal with this problem, but all suffer from the fundamental problem of 
closure, i.e. an inability to calculate the statistical averages of the distribution from a 
closed set of equations. To overcome this difficulty Warshaw assumed a priori a 
particular shape for the probability distribution with some adjustable parameters (in 
fact a binomial distribution). On the other hand, Scott (1967) used a closure approxi- 
mation to obtain the mean value of the number of particles at time t and the 
corresponding variance. De Marcus (1965) has also made contributions to this subject 
via a probability balance equation for P N ( .  . .), but his equations are very complex and 
only in special cases can they be solved with any ease. 

It is the purpose of the present paper to obtain an exact solution for a reduced 
probability distribution, namely P(n,  t ) ,  which is the total number of droplets at time t 
irrespective of their volume. Several assumptions are introduced to make the problem 
tractable. They are: (i) droplets are uniformly mixed in space; (ii) on collision, particles 
stick together; (iii) the collision cross section does not depend on the number of 
previous collisions (i.e. the effective size remains the same after each coalescence); and 
(iv) only binary collisions occur. These assumptions enable the problem to be regarded 
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as a discrete Markov process in continuous time. The resulting probability distribution 
can be obtained exactly, and any number of statistical moments can thereby be 
generated. In view of the exact solutions, various closure schemes can be assessed for 
accuracy. 

2. General theory 

We shall follow the scheme suggested by Bartlett (1962) for constructing probability 
balance equations for Markov processes in continuous time. Thus let the population of 
individual droplets at time t be represented by the random variable X ( t ) .  Let the 
increment in X ( t )  during At be A X ( t )  such that A X ( t ) = X ( t  + A t ) - X ( t )  is either a 
positive or negative integer or zero. Then we assume that a finite number of transitions 
are possible in At such that 

P ( M ( t )  =ilx(t)) =h(X)At ,  i + O ,  

where f ; ( X )  are non-negative functions of X .  Then it is shown that the probability 
generating function F(x,  t )  for P(n,  t ) ,  i.e. 

a3 

F ( X ,  t )  = xnp(n,  t ) ,  
n = O  

is given by the following differential equation (Bartlett 1962), 

where j is a positive or negative integer corresponding to births or deaths. 

by coalescence. The associated transition probability is 
In the case under consideration the only transitions which take place lead to deaths 

f - l W  = PX( t ) (X( t )  - 11, (3) 
where P is the collision frequency. The reason for this form of quadratic product arises 
from the physical requirement that when X = 1 no further transitions can take place. 

Inserting equation (3) into equation (2) and simplifying leads to the following 
differential equation for the generating function, with T = pt: 

aF(x, T ) / ~ T  = (1 - x ) x  a2F(x, 7 ) / a x 2 .  (4) 

P(n,  0 )  = S”,N,  ( 5 )  

F(x,  0 )  = X N .  (6) 

The initial condition imposed on equation (4) arises from 

or from equation (l), 

Equation (4) may be solved easily by the method of separation of variables; thus, if 
we set 

F(x, 7) = T ( 7 ) G ( x ) ,  (7) 

T ’ ( T ) / T ( T )  = x ( l  -x)G”(x)/G(x)  = -A, 

equation (4) can be rewritten as 

(8) 
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where A is a constant. Clearly 

(9)  

(10)  

- A T  T ( 7 )  = e 

and G ( x )  satisfies 

x ( 1  - X )  G" + AG = 0. 

Now this equation is related to the hypergeometric equation. Thus taking into 
account the fact that P(0, 7) = 0 (cf equation (3) ) ,  we may write for the particular 
solution 

G ( x )  = x  2 F 1 ( $ - $ f i ,  $+$=; 2 ;  x ) .  ( 1 1 )  

Let us now recall that the maximum number of droplets is N. Moreover, the 
coefficient of X"  in F(x,  t )  gives the probability of there being just n droplets present at 
time t. Therefore we see that the hypergeometric function must be a polynomial in x of 
order not greater than N - 1 .  For this to be so we must have 

$-$s1-t4h= -k, (12)  

where k is an integer running from zero to N - 1. 
The general solution of equation (4)  can now be written as 

(13)  

where we have set A = k ( k  + 1) from equation (12). 

means of the initial condition (6), i.e. 
It is now necessary to calculate the expansion coefficients dk. This may be done by 

To solve for the dk it is convenient to write x = ( 1  - y ) / 2  and to note that zF1( .  . .) is 
related to the Jacobi polynomials P!?'(y) as follows (Gradsteyn and Ryzhik 1965): 

Some simple orthogonality relations exist for the Jacobi polynomials. Use of these 
shows that for k > 0 

( - ) k ( N -  1 ) !N! (2k  + 1) 
dk = 

( N -  1 - k ) ! ( N +  k ) !  
' 

It may also be readily seen by examining F(x ,  00) that do = 1. Thus we may write the 
complete solution of equation (4 )  as 

N - l  ( - ) k ( N -  1) !N!(2k  f 1) e - k ( k + l ) r  

k=o  
F(x ,  T ) = X  1 ZFI(-k, k + 1 ;  2 ;  x ) .  ( N  - 1 - k ) ! ( N  + k ) !  

It is readily verified that F(1 ,  7) = 1 as we expect. The hypergeometric function is a 
polynomial in x which can be written concisely as 

k 1 

z F 1 ( - k , k + 1 ; 2 ; ~ ) = 1 + C  - n ( k + m ) ( m - 1 - k )  (18)  
I = 1  l ! ( l +  l ) !  m = l  

for k > O .  
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3. Probability distributions and averages 

By definition the coefficient of X I  in equation (17) isP(1, T ) ,  the probability that at time 7 

there are 1 droplets present. By reversing the order of summation we find that 

and for 1 > 0 

(20) 
As an example we see that for N = 3 

~ ( 3 ,  T )  = e-6r. (23) 
The statistical moments or averages of the distribution function are easily obtained 

by differentiating the generating function. Thus the mean value is 

and the variance is 

We see easily then that 

N - l  ( - ) k ( N -  1)!N!(2k + 1) e - k ( k + l ) ,  N ( 7 )  = 1 + 
k = l  ( N -  1 - k ) ! ( N  + k)! 

which for computational purposes is better written as 

k + l  N - 1  

N ( 7 )  = 1 + ( - l k ( 2 k  + 1) e - k ( k + l ) T  
k = l  I = 1  I = 1  m = l  m m 

Also we have 

where 
k 1  I 

/ = I  l ! ( l - l ) !  m = l  
(XF)" = - n ( k + m ) ( m - I - k ) .  

As an example, for N = 3, we find 
N ( 7 )  = 1 + 5 e-" + 5 e-6' 
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We note that for any N the variance tends to zero as T + 03, which is consistent with the 
number of droplets decreasing to the fixed value of unity as 7 + CO. 

4. The closure problem 

If only a few moments of the distribution are required, it is often convenient to bypass 
the complete solution and solve for the moments directly. Let us therefore consider 
equation (4)  for the generating function and differentiate it with respect to x and set 
x = 1. We find the equation 

subject to N ( 0 )  = N. 

therefore differentiate equation (4)  again to get 
It is unfortunate that equation (30) contains two unknown quantities 9 and N. We 

( 3 1 )  2 -32 d N  (T)/dT= -2N (T)+3N ( ~ ) - N ( T ) .  

But again we note the existence of an additional unknown 3. This process continues 
and constitutes the well known problem of closure. In practice, when it is not possible to 
solve for the probability distribution directly, various closure schemes are adopted 
which attempt to relate higher moments to lower ones. In view of the fact that we have 
an exact solution, we are in a position to assess the accuracy of some of those schemes. 

A frequently used method of closure consists of neglecting a certain-order cumu- 
lant. Thus if we define the cumulant generating function K(B, 7) by 

( 3 2 )  
e r  m 

K(B, T) = In F(ee,  r )  = 1 Kr(r);,  
r = l  r .  

we see that equation (4) leads to the following equations for K 1  and K2: 

dKl/dr = -KI2 + K1- K2 (33)  

In these equations we have by definition that N = K1 and p - N ’ =  K2.  Now the 
simplest closure scheme for K 1  is to set K2=0 in equation (33); then we have an 
equation which can be solved exactly, namely, 

( 3 5 )  

On the other hand, if we assume that the probability law is close to Poisson, it would 
be better to set the variance K 2  equal to the mean K1. In that case the solution of 
equation (33) becomes 

K1(7) = N / [ N  - ( N  - 1 )  e-‘]. 

(36) K l ( r ) = N / ( l  +NT) .  
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Although equation (35) satisfies the asymptotic condition Kl(m) = 1, equation (36)  
is closer to the accepted and experimentally measured time dependence of the mean. 
Numerical calculations of the exact result given by equation (25) indicate a behaviour 
which is intermediate between that of equations (35) and (36). 

An improved solution can be obtained for K1 and an initial estimate of K2 obtained 
by using equation (34) and setting K3 = 0. Then we have a pair of coupled nonlinear 
equations for K1 and K2 with initial conditions K1(0) = N and K2(0) = 0. Further 
improvements can be made in an obvious manner. 

Some illustrative numerical results are given in figure 1, which shows the relative 
variance K 2 / K 1  as a function of particle number K1. This is done for the approximate 
model of equations (33) and (34) with K3 = 0 and for the exact solution. A general 
feature of the exact result is that the variance is zero at T = 0 (K1 = N ) ;  increases due to 
the statistical variation of coagulating events; and tends to zero again as T -+ 03 (K1 -+ 1). 

K , / N  

Figure 1. The normalised variance K2/K1 against the normalised number density K J N  for 
various values of N. The values of N are marked on the curve. N denotes the exact curve 
and N' the approximate one. Note that time runs from right to left. 

This corresponds to the deterministic starting and finishing points of the process. The 
approximation is seen to improve markedly as the initial concentration increases, 
particularly at early times. However, for long times, when the particle number is low, 
the quasi-normality approximation fails and large deviations are noted for small K 1 / N .  
It does not seem possible to obtain any simple expressions for K2 and K1 or indeed the 
probability distribution P(n,  7). In practical situations N is likely to be very large, and 
hence a normal distribution for P(n,  T )  seems a reasonable first approximation; 
however, we have not investigated the behaviour of higher moments K,, which may be 
markedly non-normal. 
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